A Fuzzy-Logic Based Chaos GA for Cooperative Foraging of Multi-Robots in Unknown Environments

نویسندگان

  • Jianjun Ni
  • Simon X. Yang
چکیده

This paper investigates the foraging of multiple robots in completely unknown environments. The onboard robot sensor information and expert knowledge of foraging are used to forage the targets. The foraging problem in this paper is defined as a searching task, where the robots cooperate to find and reach all the targets in an efficient way. A novel fuzzy-logic based chaos genetic algorithm (FCGA) is proposed for target foraging in unknown environments. The fuzzy logic is used to avoid the disorder of the robot movement and reduce the search time when there is no information about the targets or the information density around the robots is the same. The chaos genetic algorithm enables the robots find the targets efficiently. In the proposed approach, the robot motion can be dynamically adjusted to guarantee that all the targets can be found, even in some difficult situations such as targets are at some locations difficult to find or obstacles are linked together. The proposed approach is capable of dealing with uncertainties, e.g., some robots break down. In comparison to the pure chaos genetic algorithm (PCGA) and the random-search approach, experimental results show that the proposed approach is more efficient in foraging all the targets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical formation control of wheeled mobile robots based on fuzzy logic

In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...

متن کامل

Design of Fuzzy Logic Based PI Controller for DFIG-based Wind Farm Aimed at Automatic Generation Control in an Interconnected Two Area Power System

This paper addresses the design procedure of a fuzzy logic-based adaptive approach for DFIGs to enhance automatic generation control (AGC) capabilities and provide better dynamic responses in multi-area power systems. In doing so, a proportional-integral (PI) controller is employed in DFIG structure to control the governor speed of wind turbine. At the first stage, the adjustable parameters of ...

متن کامل

Fuzzy Motion Control for Wheeled Mobile Robots in Real-Time

Due to various advantages of Wheeled Mobile Robots (WMRs), many researchers have focused to solve their challenges. The automatic motion control of such robots is an attractive problem and is one of the issues which should carefully be examined. In the current paper, the trajectory tracking problem of WMRs which are actuated by two independent electrical motors is deliberated. To this end, and ...

متن کامل

Cooperative Control of Mobile Robots in Creating a Runway Platform for Quadrotor Landing

Multi-agent systems are systems in which several agents accomplish a mission in a cooperative manner. In this paper, a novel idea for the construction of a movable runway platform based on multi-agent systems is presented. It is assumed that an aerial agent (quadrotor) decides to make an emergency landing due to reasons such as a decrease in energy level or technical failure, while there is no ...

متن کامل

Evolving Type-2 Fuzzy Logic Controllers for Autonomous Mobile Robots

Autonomous mobile robots navigating in changing and dynamic unstructured environments like the outdoor environments need to cope with large amounts of uncertainties that are inherent in natural environments. The traditional type-1 Fuzzy Logic Controller (FLC) using precise type-1 fuzzy sets cannot fully handle such uncertainties. A type-2 FLC using type-2 fuzzy sets can handle such uncertaintie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Robotics and Automation

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2012